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Abstract

The objective of this investigation was to take a small data

set which represents the unbalanced designs and explain by

example how the vaAance was actually partitioned when utilizing

the various options from the SPSS and SAS statistical packages.

That the unequal cell size ANOVA is in the typical situation a

special case of multiple regression will be demonstrated. The

analytic examples provided will give researchers a better

understanding of what is happening when different sum of squares

options in SAS or various options in sPSS are employed.



Analysis of variance (ANOVA) is arguably the most widely

utilized statistical procedure in education and the social

sciences (Edington, 1974; Goodwin & Goodwin, 1985; Halpin &

Halpin, 1988; Willson, 1980). It might further be argued that

unbalanced factorial designs are the most widely employed ANOVA

designs. The authors believe that it is the rule rather than the

exception for researchers to have unequal cell sizes in their

investigations. We tend to be skeptical of the investigations

where researchers report equal cell sizes, especially when they

fail to explain the procedures utilized to obtain equal cell

sizes. This skepticism remains regardless of whether or not the

research design is experimental or correlational in nature.

In experimental research investigators have unbalanced

designs for many reasons. Subjects miss treatment and testing

sessions due to such things as sickness or conflicting

activities. They may withdraw from the experiment or at times be

uncooperative and refuse to respond to treatments and/or

questions on response measures. Equipment breakdown is not

uncommon, and experimenters make errors. Thus, missing data and

unequal cell sizes exist even in the most competently planned

re earch.

In nonexperimental research, unequal cell sizes usually

reflect reality when there are naturally occurring variables such

as race, socioeconomic status, and religious affiliation. Taking

steps to create equal cell sizes under such conditions regardless
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of the temptation creates more problems than solutions. Even

though the only completely acceptable solution to the missing

data problem is to not have any (Cochran & Cox, 1950), we cannot

and should not throw our data away simply because we no longer

have equal sample sizes.

Assume that you had two independent variables, race and

socioeconomic status, in a two-factor ANOVA problem. Given what

is known about the relationship between race and socioeconomic

status, it is almost certain that substantial differences will

exist in cell sizes. Substantially more blacks are going to be

in the lower socioeconomic status group and more whites in the

upper socioeconomic group. When this problem is encountered, a

typical solution is to drop subjects until cell sizes are equal.

The establishment of equal cell sizes when in fact the cell sizes

are not equal in reality results in what Humphreys and Fleishman

(1974) refer to as "pseudo-rrthogonal" designs and results in

what Hoffman (1960) refers to as the "dismemJerment of reality."

Making naturalistically occurring variables such as race and

socioeconomic status independent by dropping cases in the

factorial ANOVA would generate unrealistic results. Therefore,

under most conditions unequal size factorial ANOVA is either

unavoidable or desirable.

The ANOVA procedure in the Statistical Package for the

Social Sciences--SPSSX (Norusis, 1988) or SPSS/PC+ (Norusis,

1990)--or the General Linear Model procedure from the Statistical

Analysis System--SAS (SAS Inc., 1985)--are typically employed



when dealing with the unequal cell sizes. What are the

differences between these approaches? Do researchers who make

these choices rcAlly know how the variance is being partitioned?

The purpose of this undertaking is to explain how the

variance is actually being partitioned using the various options

from the SPSS and SAS statistical packages when the researcher

has unequal cell sizes. More specifically, our objective is to

describe how the variance is being partitioned when Option I

(unique), Option 10 (hierarchical), or default from SPSSX or

SPSS/PC+ and Type I or Type III sums of squares options from SAS

are chosen. When researchers understand how the variance is

actually being partitioned, they will be better able to match the

appropriate analytical option with their research questions.

Method

In the classical factorial analysis of variance model the

total variance or sum of squares is partitioned into mutually

exclusive components reflecting various effects. In the two-

factor completely randomized design the total sum of squares is

partitioned into the sum of squares for Factor A, the sum of

squares for Factor B, the sum of squares for the interaction of

Factor A and Factor B, and the sum of squares for the residual or

error as reflected in Figure 1.
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Figlire 1. Variance partitioned for equal cell sizes.

These various effects are unambiguously partitioned into mutually

exclusivc and exhaustive categories as presented in Figure 1 when

the cell sizes of the design are equal.

However, problems occur when for any reason the cell sizes

become unequal. Unequal cell size designs are frequently

referred to as unb :anced or nonorthogonal designs since Factor

A, Factor B, and the interaction between Factors A and B are

intercorrelated. In multiple regression terminology we have a

multicolinearity problem. The total sum of squares no longer

equals the sum of squares of Factors A, B, A x B interaction, and

error.

In the two-factor case the effects of A, B, and the A x B

interaction not only are interrelated but also share in the

accounting of the variance of the dependent variable. In Figure

4
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2, the different shaded areas represent the unique effects of

Factors A, B, and the A x B interaction. The shaded areas

labeled 1, 2, and 3 separating each of the unique effects

represent tha proportions of the dependent variable variance

accounted fez* jointly by the effects on either side.

Factor A

III Factor B

111111 Interaction AxB

E] Error

Figure 2. Unequal cell size analysis of variance.

Because the dependent variable variance can no longer be

unambiguously partitioned among the different main effects and

the interaction, researchers may ask how the variance is to be

assigned to the different effects. Applebaum and Cramer (1974)

observed that "[t]he nonorthogonal multifactor analysis of

variance is perhaps the most misunderstood analytic technique"

and we might add one of the most controversial techniques

"available to the behavioral scientists, save factor analysis:

(p. 335).
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The three most frequently used methods for partitioning

the variance in the nonorthogonal factorial designs were

explained by Overall and Spiegel (1969). In the two-factor

design their Method 1, Method 2, and Method 3 correspond

respectively to Option 9 (unique), default option, and Option 10

(hierarchical) in the ANOVA procedure from SPSS. In the GLM

procedure from the SAS system, the Type I sums of squares option

is equivalent to SPSS Option 10 and Overall and Spiegel's Method

3, and Type III sums of squares from SAS is equivalent to Option

9 of SPSS and Method 1 from Overall and Spiegel. The interested

reader would profit from reading Overall and Spiegel (1969) and

Lutz (1979).

The various methods of dealing with the nonorthogonal ANOVA

problem via SPSS and SAS can probably best be understood as a

multicolinearity multiple regression problem. First, we need to

restate that with the two-factor orthogonal ANOVA design the

total sum of squares iw equal to the sum of the sum of squares

for Factor A, Factor 8, the interaction of A x B, and error as

presented in Figure 1. From a multiple rt.7ression perspective

the sum of squares for each effect and error can be divided by

the total sum of squares to yield the proportions of variance

accounted for by each source. These proportions are known as

R2s, and the sum of these proportions of variance for all of the

sources (PV2T) equals 1. Equation 1 reflects the two-factor

orthogonal case.

6
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Equation 1. PV2T R2A R26 4' R2Axo (1 R2mAx)

In Equation 1, the total proportion of variance (PV2T) is

equal to the proportion of variance accounted for by Factor A

(R2A) plus the proportion of variance accounted for by Factor B

(R2B) plus the proportion of variance accounted for by the A x B

interaction (R2AxB) plus the proportion of error variance (1 -

R2 ). As can be observed in Figure 1, the sums of the areas

within the circle would equal 1 if those areas are converted to

proportions as is being discussed here.

The dilemma of jointly accounting fo: the variance in the

dependent variable occurs when unequal cell sizes exist. This

problem can be observed in Figure 2 where the total proportion of

variance (PV2T) is no longer equal to the proportion of variance

accounted for by Factor A (R2A) plus the proportion of variance

accounted for by Factor B (R2B) plus the proportion of variance

for interaction (R2AxB) plus the proportion of variance for ettor

(1 - R2mAx) as reflected in Equation 2.

Equation 2. PV2T R2A R2B R2AxB "2mAx,

The proportions of variance for Factors A, B, and the A x B

interaction are represented as in Figure 1 except that in Figure

2 there are wide shaded boundaries labeled 1, 2, and 3 between

each of the effects. These overlapping areas in Figure 2

represent the proportion of the total variance of the dependent

7



vw:iable jointly accounted for by Factors A and B (Area 1),

Factor B and the A x B interaction (Area 2), Factor A and the A x

B interaction (Area 3). If these areas of overlap are allocated

to Factor A, Factor B, cid the interaction of A x B, then the

variance will be accounted for twice and the total proportion of

variance explained will be greater than 1. Stated differently,

the sums of squares for the various effects plus error will be

greater than the total sum of squaros. If the overlap areas are

not assigned to one of the effects, the total proportion of

variance allocated will be less than 1, and the sum of squares

for the various effects plus the sum of squares for error will be

less than the total sum of squares. This sharing of dependent

variable variance by more than one independent variable

represents the widely known multicolinearity multiple regression

problem, and the different procedures for dealing with this

problem are central in this paper.

Data Set

Before considering the explanations of the methods, observe

in Table 1 the data employed in demonstration analyses using the

Insert Table 1 about here

different methods. Note that there are three levels of Factor A

and two levels of Factor B and the number of observations in the

cells are not equal. Next, peruse Table 2 and observe that the

8
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Insert Table 2 about here

sums of squares, F ratios, probability levels, and proportions of

variance (R2) by each of the effects differ for all three

methods. These differences among the three methods are small and

of little consequence with the data set we have chosen to

analyze. If the discrepancy among the cell sizes had been

greater the multicolinearity problem would have been greater and

the potential for disparate outcomes among the three methods

would have increased.

SPSS_Default Method

When cell sizes are unequal and the researcher fails to

specify an option, the default option is utilized with SPSS.

Type I and Type III sums of squares are routinely provided in

SAS, neither of which compares with the default option of SPSS.

Utilizing multiple regression concepts, we explain how the

sums of squakres, F ratios, and proportions of variance in Table 2

are obtained for the SPSS default option. In explaining the

results we will utilize Equation 3 and Figure 3.

Equation 3. PV2T = R2A.11 R23.A R2MEI.A,B 4. R201 4. (1 R2MAX)

In utilizing Equation 3 to explain the default ANOVA results

in Table 2, the proportion of total variance in the dependent

variable (PV2T) is equal to the proportion of variance accounted

9
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for by Factor A while controlling for Factor B (R2A.B) plus the

proportion of variance accounted for by Factor B while

controlling for Factor A (R23.A) plus the proportion of variance

accounted for uniquely by the A x B interaction while controlling

for the main effects of both Factors A and B (R2AxELA,B) plus the

proportion of variance accounted for by both Factors A and B but

not attributed to either (R201) plus the error variance which is

that proportion of dependent variable variance not accounted for

by any of the four specified effects (1 - R2mAx). The unique

aspect of the default option method of analysis from SPSS as

depicted in Equation 3 is R201. R.201 as well as the other aspects

of the default method of analysis can probably best be depicted

by utilizing the information in Table 2 and referring to

Figure 3.

R2 io .179

Birector Ali Faator II

11111 Interaction Axe

ll ()wisp

ElError

I
1 - ralAlt
ERROR

R I mis .019

R2 oi .028

IR ILA .069

Figure 3. Variance partitioned using default option.
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Referring to Table 2 under the default method, we find that

the proportion of variance allocated tn Factor A is obtained by

dividing the sum of squares for Factor A while controlling for

Factor B (SSA.B) by the total sum of squares (SSTOTAL). R2A.B =

SSA.B / SSTOTAL m 6.806/38.124 = .179 with an F ratio = 4.307 and

a probability of .022. In Figure 3, R2A.B = .179 depicts the

proportion of dependent variable variance uniquely represented by

Factor A plus the overlap area between Factor A and the A x B

interaction labeled 3.

The proportion of variance allocated to Factor B is found by

dividing the sum of sqLares for Factor B controlling for Factor A

(SSB.A) by the total sum of squares (SST0TAL). R2B.A = SS" /

SSTOTAL = 2.617/38.124 = .069 with an F ratio = 3.312 and a

probability of .078. In Figure 3, R2B.A = .069 represents the

proportion of the dependent variable variance accounted for

uniquely by Factor B plus the area of overlap labeled 2 which is

the proportion of the dependent variable variance accounted for

jointly by Factor B and the A x B interaction.

The proportion of variance allocated to the interaction is

obtained by dividing the sum of squares for interaction

controlling for Factors A and B (SS B.A,B) by the total sum ofAx

squares (ss--TOTAL). R2AxB.A,B SSAxB.A,B SSTOTAL .731/38.124 =

.019 with an F ratio = .463 and a probability of .634. In Figure

3, R2A".Atri = .019 represents the proportion of dependent

variable variance accounted for uniquely by the A x B interaction

after controlling for Factors A and B.

11

1 4



But not yet accounted is the overlap area labeled 1. This

portion of variance in the dependent variable is referred to as

R201 in Equation 3. The area of overlap labled 1 (R201) in

Figure 3 represents the dependent variable variance accounted for

by both Factors A and B and not assigned to any effect: R201 = 1

2
(R2A.B '

4- R2
2

B.A R Ax8.A,B (1 R max)] m 1 [.179 + .069 +

.019 + .705] = .028.

The area labeled ERROR in Figure 3 refers to the proportion

of variance in the dependent variable not allocated to either

main effect, the A x B interaction, cr R201. In Table 2, the

proportion of the dependent variable variance designated as error

is found by dividing the sum of squares for error by the total

sum of squares: (1 -

.705.

SPS ti 9 A

R2MAX) = SSERROR / Sarimma, = 26.866/38.124 =

II S

As with the default method the multiple regression concepts

are utilized to explain how the sums of squares, F ratios, and

proportions of variance in Table 2 are obtained for the SPSS

Option 9 and SAS Type III sums of squares. In explaining the

results we will utilize Equation 4 and Figure 4.

Equation 4. PV2T = R 2A.B,MB R2B.AfAx9 R2Ax9.A,B R202

(1 R2MAX)

The proportion of total variance in the dependent variable

(PV2T) is equal to the proportion of variance accounted for by

12
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Factor A while controlling for

(R2A. s, Axs) plus the proportion

Factor B while controlling for

(R213.A, AxEi ) plus the proportion

Factor B and the A x B interaction

of variance accounted for by

Factor A and the A x B interaction

of variance accounted for by the

A x B interaction while controlling for the main effects of both

Factors A and B (R2AxB."). The proportions of variance

allocated to the main effects and interaction effect will not

include any of the overlap areas. This jointly accounted for

variance in the dependent variable (R202) is equal to the

proportion of variance accounted for jointly by Factors A and B

(overlap labeled 1 in Figure 4) but not attributed to either plus

the proportion of variance accounted for jointly by Factor A and

the A x B interaction (overlap labeled 3 in Figure 4) but not

attributed to either plus the proportion of variance accounted

for jointly by Factor B and the A x B interaction (overlap

labeled 2 in Figure 4) but not attributed to either plus the

error variance which is not accounted for by any of the four

specified effects. The unique aspect of the Option 9 ANOVA

procedure from SPSS and Type III sums of squares from the GIJM

procedure of SAS in Equation 4 is R202, the proportion of

variance in the dependent variable which is left unallocated to

either main effect, the interaction effect, or error. R202 along

with the other aspects of SPSS Option 9 and SAS Type III sums of

squares methods of analyses can probably best be depicted by

utilizing the information in Table 2 and referring to Figure 4.

13
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Figure 4. Variance partitioned using SPSS Option 9 and SAS

Type III sums of squares.

Referring to Table 2 under the Option 9/Type III method, we

find that the proportion of variance allocated to Factor A is

found by dividing the sum of squares for Factor A while

controlling for Factor B and the A x B interaction (SSA.BIA3a3) by

the total sum of squares (SS
TOTAL) R2A.3r AxB = SSA B AxB / Sarom

= 6.271/38.124 = .167 with an F ratio = 4.032 and a probability

of .027. In Figure 4, R2A.5fAxB = .167 represents the proportion

of dependent variable variance accounted for by Factor A while

controlling for Factor B and the A x B interaction.

Similarly, the proportion of variance allocated to Factor B

is found by dividing the sum of squares for Factor B while

controlling for Factor A and the A x B interaction (SSB."") by

14
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the total sum of squares (SSTOTAL) R2B.A AxEl = SSB.A,Axs / SSTOTAL

= 2.391/38.124 = .063 with an F ratio = 3.026 and a probability

of .091. In Figure 4, R2B.A,A3d3 = .063 represents the proportion

of dependent variable variance accoUnted for by Factor B while

controlling for Factor A and the A x B interaction.

The SPSS Option 9/SAS Type III sum of squares methods to

determine the proportion of dependent variable variance accounted

for uniquely by the A x B interaction are identical to the

default approach. The proportion of variance was obtained by

dividing the sum of squares for interaction (SSAxBeA,B) by the

total sum of squares (SSTOTAL). R2Axg." = SSTOTALSSAxB.A,B / =

.731/38.124 = .019 with an F ratio = .463 and a probability of

.634. In Figure 4, R2AxB.A,B =.019 represents the proportion of

dependent varlable variance accounted for by the A x B

interaction while controlling for Factors A and B. Recall from

the default option that none of the areas of overlap labeled 1,

2, and 3 are allocated to the A x B interaction effect.

The area labeled R202 in Figure 4 represents the proportion

of variance accounted for jointly by Factors A and B and not

assigned to any effect (area of overlap labeled 1) plus the

proportion of variance accounted for jointly by Factor B and the

A x B interaction (area of overlap labe]ed 2) plus the proportion

of variance accounted for jointly by Factor A and the A x B

interaction (area of overlap labeled 3). R202 = 1 - (112A.B,MB

+ (1 - R2mAx)] = 1 - [.167 + .063 + .019 +R28.A,AxB + R2AxB.A,8

.705] = .046.

15
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The area labeled ERROL in Figure 4 refers to the proportion

of variance in the dependent variable not anclated to either

main effect, the A x B interaction, or R202 (overlaps labeled 1,

21 3). In Table 2 the proportion of dependent variable variance

designated as error is found by dividing the sum of squares for

error by the total sum of squares: (1 - R2mAx) = SSEAROR SSTOTAL

= 26.866/38.124 = .705. Tha proportion of dependent variable

variance labeled error is the same as in the default option.

SPSS Option 10 and SAS lypg_Ii_StmEc2Laquares

Utilizing multiple regression concepts, we explain how the

sums of squares, F ratios, and proportions of variance in Table 2

are obtained for SPSS Option 10 and SAS Type I sums of squares.

In explaining the results we will utilize Equation 5 and

Figure 5.

Equation 5. PV2T = R2A R25.A R2AXB.A,B ( 1 R2mAx)

Referring to Table 2 under the SPSS Option 10/SAS Type I

sums of squares, we find that the proportion of variance

allocated to Factor A is found by dividing the sum of squares for

Factor A (SSA) by the total sum of squares (SSTOTAL). This value

includes the unique contribution of Factor A plus the proportion

of the dependent variable variance accounted for by Factor A and

the A x B interaction and the proportion of dependent variable

variance accounted for by both Factors A and B. R2A = SSA /

SSTOTAL 7.911/38.124 = .210 with an F ratio = 5.006 and a

16
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probability of .012. In Figure 5, R2A = .210 represents Factor A

plus the overlap area labeled 1, which is the proportion of

variance shared by Factors A and B, plus the overlap area labeled

3, which is the proportion of variance shared jointly by Factor A

and the A x B interaction.

11111 Intfreation Axil

III Ovor lap

0 Error R t AxILAJI .019

Figure 5. Variance partitioned using SPSS Option 10 and SAS

Type I sums of scuares.

Referring to Table 2, we find that the proportion of

variance accounted for by Fact-r B, or the second variable

entered on the procedure statement, is found by dividing the sum

of squares for Factor B (SS") by the total sum of squares

("Tom) R28.A = SSB.A / SSTomml = 2.617/38.124 = .069 with an F

ratio = 3.312 and a probability of .078. When Factor B is the

second variable entered into the equation Factor B variance is

allocated as in the default option. In Figure 5, R2"

represents the proportion of the dependent variable variance

17



accounted for uniquely by Factor B plus the area of overlap

labeled 2, which is the proportion of the dependent variable

variance accounted for jointly by Factor B and the A x B

interaction. When using hierarchical approach, Option 10 from

SPSS and Type I sums of squares from SAS, to represent Factor B

or the second variable entered into the equation, the specific

effects are the unique effects of Factor B while controlling for

Factor A but not controlling for the A x B interaction.

Numerically, R25.A = .069.

In Table 2 the proportion of dependent variable variance

accounted for uniquely by the A x B interaction utilizing SPSS

Option 10 and SAS Type I sums of squares is identical to the

results found with SPSS Option 9, SAS Type III sums of squares,

and the default approach (SPSS). These explanations will not be

repeated.

The area labeled error in Figure 5 refers to the proportion

of variance in the dependent variable not allocated to either

main effect or the A x B interaction. The proportion of

dependent variable variance not explained and labeled as error is

the same for all three methods and will not be repeated.

Discussion

When comparisons are made among the analytical methods in

terms of proportions of variance accounted for by the effects,

methodological differences become more apparent. With the

default method of SPSS, R2A.8 = 179 of the variance is allocated

to Factor A. With SPSS Option 10 and SAS Type I sums of squares,

18



R2A = .210 of the variance is allocated to Factor A. When SPSS

Option 9 and SAS Type III sums of squares are used, R2A.B,AxB

=.167 of the dependent variable variance is allocated to

Factor A.

When F ratios and probabilities are evaluated in Table 2, we

find that larger F ratios and smaller probabilities are assigned

to Factor A with SPSS Option 10 and SAS Type I sums of squares.

Smaller F ratios and larger probabilities are assigned to Factor

A using SPSS Option 9 and SAS Type III sums of squares. The

direction of these results are typical but are likely to be

greater as the discrepancy in cell sizes increases.

When the variance accounted for by Factor B, or the second

variable entered, the results are not as discrepant as they are

for Factor A. The proportions of dependent variable variance

allocated to Factor B using SPSS Option 10 and SAS Type I sums of

squares are identical to the default SPSS ANOVA results, R2B.A =

.069, and are higher than the results from SPSS Option 9 ANOVA

and SAS Type III sums of squares, R2B.AFAxB = .063.

Tha interactions, which are evaluated after controlling for

the main effects, are the same for both SAS and SPSS.

After some reflection upon the problem at hand and some

practical experience with SPSS and SAS, it becomes fairly obvious

that the order in which the independent variables are entered

into the model can have a substantial impact on the proportions

of dependent variable variance accounted for using SPSS Option 10

and SAS Type I sums of squares. The first variable entered into

19
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the model, Factor A in this case, has the opportunity to account

for larger proportions of dependent variable variance than when

the SPSS default option is used. This result is especially true

when the cell sizes are grossly different.

Finally, different research questions are being asked of the

data with each of the three methods. Utilizing the default

option of the SPSS ANOVA procedure, researchers are answering the

following questions:

1. For Factor A, what is the relationship between Factor A

and the dependent variable after controlling for the main effect

of Factor B but not controlling for the A x B interaction?

2. For Factor B, what is the relationship between Factor B

and the dependent variable after controlling for the main effect

of Factor A but not controlling for the A x B interaction?

3. What is the relationship between the A x B interaction

and the dependent variable when controlling for the main effects

of Factors A and B?

Using Option 9 of the SPSS ANOVA procedure and Type III sums

of squares from the SAS GLM procedure, researchers are addressing

the following research questions:

1. For Factor A, what is the relationship between Factor A

and the dependent variable after controlling for the main effect

of Factor B and the A x B interaction?

2. For Factor B, what is the relationship between Factor B

and the dependent variable after controlling for the main effect

of Factor A and the A x B interaction?

20



3. What is the relationship between the A x B interaction

and the dependent variable when controlling for the main effects

of Factors A and B?

Using Option 10 of the SPSS ANOVA procedure and Type I sums

of squares from the SAS GLM procedure, researchers are addressing

the following research questions:

1. For Factor A, what is the relationship between Factor A

and the dependent variable?

2. For Factor B, what is the relationship between Factor B

and the dependent variable after controlling for the main effect

of Factor A?

3. What is the relationship between the A x B interaction

and the dependent variable when controlling for the main effects

of Factors A and B?

If researchers understand what research questions are being

answered and exactly how the variance is being partitioned with

analyses done with the ANOVA procedure of the Statistical Package

for the Social Sciences and the GLM procedure of the Statistical

Analysis System, they are much more likely to choose wisely among

the options available to them.
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I,

Table 1

Scores Utilized in the Two-Factor Noporthocronal ANOVA

with SPSS and SAS

Factor A

Level 1

Factor B

Level 1 Level 2

Level 2

Factor B

Level 1 Level 2

Level 3

Factor B

Level 1 Level 2

9.5 10.4 8.4 10.4 8.6 10.0

8.7 11.6 10.5 9.4 7.3 9.5

10.4 9.3 9.8 10.6 10.2 8.9

10.1 8.5 10.6 11.0 9.5 9.9

10.3 11.4 11.1 9.8 10.6

10.2 10.6 10.3 8.9 10.4

10.4 10.6 9.7

10.7 10.0

7.1



Table 2

Two-Factor ANOVA in Nonorthogonal Design Using SPSS and SAS

Source SS df MS F p R2

Method 2: SPSS Default Option

Factor A 6.806 2 3.403 4.307 .022 .179

Factor B 2.617 1 2.617 3.312 .078 AMB

Interaction .731 2 .366 .463 .634 .019

Error 26.866 34 .790 .705

Total 38.124 39

Method 1: SPSS Option 9: SAS Type III SS

Factor A 6.371 2 3.186 4.032 .027 .1E0

Factor B 2.391 1 2.391 3.026 .091 AM

Interaction .731 2 .366 .463 .634 AM

Error 26.866 34 .790 aC6

Total 38.124 39

Method 3: SPSS Option 10: SAS Type I SS

Factor A 7.911 2 3.955 5.006 .012 .210

Factor B 2.617 1 2.617 3.312 .078 AXB

Interaction .731 2 .366 .463 .643 .019

Error 26.866 34 .790 .705

Total 38.124 39
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